skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhuang_庄, Ming-Yang 明阳"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present in this paper (Paper II of the series) a 35 arcmin2JWST/NIRCam imaging and wide-field slitless spectroscopy mosaic centered on J0305–3150, a luminous quasar atz= 6.61. The F356W grism data reveal 124 [Oiii]+Hβemitters at 5.3 < z < 7, 53 of which constitute a protocluster spanning (10 cMpc)2across 6.5 < z < 6.8. We find no evidence of any broad-line active galactic nucleus (AGN) in individual galaxies or stacking, reporting a median HβFWHM of 585 ± 152 km s−1; however, the mass–excitation diagram and “little red dot” color and compactness criteria suggest that there are a few AGN candidates on the outskirts of the protocluster. We fit the spectral energy distributions (SEDs) of the [Oiii] emitters withProspectorandBagpipesand find that none of the SED-derived properties (stellar mass, age, or star formation rate) correlate with proximity to the quasar. While there is no correlation between galaxy age and local galaxy density, we find modest correlations of local galaxy density with increasing stellar mass, decreasing 10–100 Myr star formation rate ratios, and decreasing nebular line equivalent widths. We further find that the protocluster galaxies are consistent with being more massive, being older, and hosting higher star formation rates than the field sample at the 3σlevel, distributed in a filamentary structure that supports inside-out formation of the protocluster. There is modest evidence that galaxy evolution proceeds differently as a function of the density of local environment within protoclusters during the epoch of reionization, and the central quasar has little effect on the galaxy properties of the surrounding structure. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  2. Abstract A SPectroscopic survey of bIased halos in the Reionization Era is a quasar legacy survey primarily using JWST to target a sample of 25z > 6 quasars with NIRCam slitless spectroscopy and imaging. The first study in this series found evidence of a strong overdensity of galaxies around J0305−3150, a luminous quasar atz= 6.61, within a single NIRCam pointing obtained in JWST Cycle 1. Here we present the first results of a JWST Cycle 2 mosaic that covers 35 arcmin2with NIRCam imaging/wide-field slitless spectroscopy of the same field to investigate the spatial extent of the putative protocluster. The F356W grism data target [Oiii]+Hβat 5.3 < z < 7 and reveal a population of 124 line emitters down to a flux limit of 1.2 × 10−18erg s−1cm−2. Fifty-three of these galaxies lie at 6.5 < z < 6.8 spanning 10 cMpc on the sky, corresponding to an overdensity within a 2500 cMpc3volume of 12.5 ± 2.6, anchored by the quasar. Comparing to the [Oiii] luminosity function from the Emission line galaxies and Intergalactic Gas in the Epoch of Reionization project, we find a dearth of faint [Oiii] emitters at log(L/erg s−1) < 42.3, which we suggest is consistent with either bursty star formation causing galaxies to scatter around the grism detection limit or modest suppression from quasar feedback. While we find a strong filamentary overdensity of [Oiii] emitters consistent with a protocluster, we suggest that we could be insensitive to a population of older, more massive Lyman break galaxies with weak nebular emission on scales >​​​​​​10 cMpc. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026